

Course syllabus

Programming Methods and Abstractions

COURSE DETAILS		
<i>Type of study programme</i>	Undergraduate professional study programme- 180 ECTS	
<i>Study programme</i>	Computing	
<i>Course title</i>	Programming Methods and Abstractions	
<i>Course code</i>	SRC109	
<i>ECTS</i> <i>(Number of credits allocated)</i>	7	
<i>Course status</i>	Core	
<i>Year of study</i>	First	
<i>Course Web site</i>	http://moodle.oss.unist.hr/	
<i>Total lesson hours per semester</i>	Lectures	45
	Practicals	0
	Laboratory exercises & practical demonstration	30
<i>Prerequisite(s)</i>	None	
<i>Lecturer(s)</i>	Ljiljana Despalatović, senior lecturer	

COURSE DESCRIPTION

<i>Course Objectives:</i>	<ul style="list-style-type: none">• Understanding fundamental programming concepts (variables, iteration, recursion, conditional execution, functions, pointers, and memory management).• Learning the C programming language: syntax, standard library, idioms, and patterns.• Acquiring procedural and modular programming techniques.• Adopting an algorithmic approach to problem definition.• Theoretical and practical preparation of students for further advancement of programming skills.
<i>Learning outcomes</i> <i>On successful completion of this course, student should be able to:</i>	<ol style="list-style-type: none">1. Define and explain basic programming concepts: variables, data types, functions, iteration and recursion, pointers, and structures.2. Describe the relationships, similarities, and differences between basic concepts; describe program execution and the program memory layout during runtime.3. Design algorithms for basic programming problems and implement them in the C programming language; use a compiler and linker or an Integrated Development Environment (IDE).4. Recognize patterns for solving simple problems; identify syntax and semantic errors in programs.5. Implement assigned problems.6. Test one's own solutions, test edge cases, and evaluate complexity.
<i>Course content</i>	Algorithms. Variables and Types. Operators. Functions (and recursive functions). Pointers, Arrays, and Strings. Dynamic Allocation. Function Pointers. File Operations. Structures. Preprocessor. Variable Lifetime and Scope.

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes		
Activity	Student workload ECTS credits	Learning outcomes
<i>Lectures</i>	42 hours / 1,4 ECTS	1,2,4,5,6
<i>Laboratory work</i>	30 hours / 1 ECTS	2,3,5,6
<i>Two mid-term exams (preparation and delivery)</i>	30 hours / 1 ECTS	2,3,5,6
<i>Self-study</i>	93 hours / 3.1 ECTS	1,2,3,4,5,6
<i>Office hours and final exam</i>	15 hours / 0.5 ECTS	1,2,3,4,5,6
TOTAL:	210 hours / 7 ECTS	1,2,3,4,5,6

CONTINUOUS ASSESSMENT		
Continuous testing indicators	Performance A_i (%)	Grade ratio k_i (%)
<i>Class attendance and participation</i>	50 – 100	10
<i>Laboratory work</i>	100	20
<i>First mid-term exam</i>	50-100	35
<i>Second mid-term exam</i>	50-100	35

FINAL ASSESSMENT		
Testing indicators – final exam (first and second exam term)	Performance A_i (%)	Grade ratio k_i (%)
<i>Practical exam (written)</i>	50 – 100	70
<i>Previous activities</i> (include all continuous testing indicators)	100	30
Testing indicators – makeup exam (third and fourth exam term)	Performance A_i (%)	Grade ratio k_i (%)
<i>Practical exam (written)</i>	50 - 100	70
<i>Theoretical exam (written and/or oral)</i>	100	30

PERFORMANCE AND GRADE

Percentage	Criteria	Grade
50% - 61%	<i>basic criteria met</i>	sufficient (2)
62% - 74%	<i>average performance with some errors</i>	good (3)
75% - 87%	<i>above average performance with minor errors</i>	very good (4)
88% - 100%	<i>outstanding performance</i>	outstanding (5)

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students.